domingo, 11 de noviembre de 2012

Para entrar en calor

Les dejamos este video para que vayan entrando en el mundo del condensado Bose-Einstein


Entendamos que...

Los diferentes estados en que podemos encontrar la materia de este universo en el que vivimos se denominan estados de agregación de la materia, porque son las distintas maneras en que la materia se "agrega", distintas presentaciones de un conjunto de átomos. Los estados de la materia son cinco:

  1. Sólido 
  2. Líquido 
  3. Gaseoso 
  4. Plasma 
  5. Condensado de Bose-Einstein 

Los tres primeros son de sobra conocidos por todos nosotros y los encontramos en numerosas experiencias de nuestro día a día. El sólido lo experimentamos en los objetos que utilizamos, el líquido en el agua que bebemos y el gas en el aire que respiramos.

El plasma es un estado que nos rodea, aunque lo experimentamos de forma indirecta. El plasma es un gas ionizado, esto quiere decir que es una especie de gas donde los átomos o moléculas que lo componen han perdido parte de sus electrones o todos ellos. Así, el plasma es un estado parecido al gas, pero compuesto por electrones, cationes (iones con carga positiva) y neutrones. En muchos casos, el estado de plasma se genera por combustión. 



El Sol situado en el centro de nuestro sistema solar está en estado de plasma, no es sólido, y los conocidos tubos fluorescentes contienen plasma en su interior (vapor de mercurio). Las luces de neón y las luces urbanas usan un principio similar. La ionosfera, que rodea la tierra a 70,80 km de la superficie terrestre, se encuentra también en estado de plasma. El viento solar, responsable de las deliciosas auroras boreales, es un plasma también.

En realidad, el 99% de la material conocida del universo se encuentra en estado de plasma. Aunque también es verdad que sólo conocemos el 10% de la material que compone el universo. Esto significa que el escaso 105 de materia que hemos estudiado, el 99% es plasma, o sea, casi todo es plasma en el universo.

Es interesante analizar que los griegos sostenían que el universo estaba formado por cuatro elementos: aire, agua, tierra y fuego. Haciendo un símil, podríamos asignar un elemento físico a cada elemento filosófico:

  1. Aire - Gas 
  2. Agua - Líquido 
  3. Tierra – Sólido Fuego – Plasma 

El quinto estado de la materia, Condensado Bose-Einstein (BEC), se alcanza cerca del cero absoluto de temperatura (-273 grados centígrados), mediante la condensación de miles de átomos. Su existencia fue pronosticada hace 80 años por los científicos de los que deriva su nombre.

En 1920, S. N. Bose (físico hindú) desarrolló una estadística mediante la cual se estudiaba cuándo dos fotones debían ser considerados como iguales o diferentes.

A efectos de lograr su apoyo ante la Comunidad científica, le envió sus investigaciones a A. Einstein, quien, además de apoyarle, aplicó lo desarrollado por Bose a los átomos. En 1924-25, ambos predijeron que átomos extremadamente fríos podrían condensarse en un único estado cuántico.

Explicación física

En física, el condensado de Bose-Einstein es el estado de agregación de la materia que se da en ciertos materiales a muy bajas temperaturas. La propiedad que lo caracteriza es que una cantidad macroscópica de las partículas del material pasan al nivel de mínima energía, denominado estado fundamental. El condensado es una propiedad cuántica que no tiene análogo clásico. Debido al principio de exclusión de Pauli, sólo las partículas bosónicas pueden tener este estado de agregación: si las partículas que se han enfriado son fermiones, lo que se encuentra es un líquido de Fermi.



En la década de 1920, Satyendra Nath Bose y Albert Einstein publican conjuntamente un artículo científico acerca de los fotones de luz y sus propiedades. Bose describe ciertas reglas para determinar si dos fotones deberían considerarse idénticos o diferentes. Esta se llama la Estadística de Bose (o a veces la Estadística de Bose-Einstein). Einstein aplica estas reglas a los átomos preguntándose cómo se comportarían los átomos de un gas si se les aplicasen estas reglas. Así descubre los efectos que vienen del hecho de que a muy bajas temperaturas la mayoría de los átomos están al mismo estado cuántico, que sería el menos energético posible. 



Imagínese una taza de té caliente, las partículas que contiene circulan por toda la taza. Sin embargo cuando se enfría y queda en reposo, las partículas tienden a ir en reposo hacia el fondo. Análogamente, las partículas a temperatura ambiente se encuentran a muchos niveles diferentes de energía. Sin embargo, a muy bajas temperaturas, una gran proporción de éstas alcanza a la vez el nivel más bajo de energía, el estado fundamental.

Ejemplos de estado Bose-Einstein

La superconductividad es un ejemplo de condensado. En ésta son los pares de Cooper (asociaciones de una pareja de electrones) los que se comportan como un bosón y decae al nivel fundamental. La superconductividad está caracterizada por la ausencia de resistencia eléctrica. 




La superfluidez es otro ejemplo de condensado. El Helio cuando se enfría se licúa, si seguimos enfriando los átomos de Helio (que son bosones) descienden al nivel de mínima energía, el 0 Kelvin. Esto hace que los átomos no adquieran energía por fricción, lo que hace que no se disipe energía por movimiento. El resultado es un plano horizontal infinitamente estrecho; como lo que pasa en el interior de las supernovas cuando su periodo vital se agota y se transforman en agujeros negros. 

Se le atribuye un efecto cuántico macroscópico óptico al condensado Bose-Einstein de átomos de sodio que, al inducirle electromagnéticamente el estado de translucidez, tiene la propiedad de reducir la velocidad de la luz en forma asombrosa. Hasta 20 millones de veces su velocidad en el vacío, equivalente a 17 metros por segundo (m/s).